
CSC 2224: Parallel Computer 
Architecture and Programming

Memory Hierarchy & Caches

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the lectures of 
Onur Mutlu @ CMU and ETH



Cache Performance



Cache Parameters vs. Miss/Hit Rate

• Cache size
• Block size
• Associativity

• Replacement policy
• Insertion/Placement policy

3



Cache Size
• Cache size: total data (not including tag) capacity

–  bigger can exploit temporal locality better
–  not ALWAYS better

• Too large a cache adversely affects hit and miss latency
–  smaller is faster => bigger is slower
–  access time may degrade critical path

• Too small a cache
–  doesn’t exploit temporal locality well
–  useful data replaced often

• Working set: the whole set of data                                                    
the executing application references 
– Within a time interval 

4

hit rate

cache size

“working set”
 size



Block Size
• Block size is the data that is associated with an address tag 

–  not necessarily the unit of transfer between hierarchies
• Sub-blocking: A block divided into multiple pieces (each with V bit)

– Can improve “write” performance

• Too small blocks
–  don’t exploit spatial locality well
–  have larger tag overhead

• Too large blocks
– too few total # of blocks � less

temporal locality exploitation
– waste of cache space and 
bandwidth/energy:
    if spatial locality is not high

5

hit rate

block
size



Large Blocks: Critical-Word and Subblocking

• Large cache blocks can take a long time to fill into 
the cache
– fill cache line critical word first 
– restart cache access before complete fill

• Large cache blocks can waste bus bandwidth 
– divide a block into subblocks
– associate separate valid bits for each subblock
– When is this useful?

6

tag      subblockv      subblockv      subblockvd d d



Associativity
• How many blocks can be present in the same index (i.e., 

set)?
• Larger associativity

– lower miss rate (reduced conflicts)
– higher hit latency and area cost (plus diminishing returns)

• Smaller associativity
– lower cost
– lower hit latency

• Especially important for L1 caches

• Is power of 2 associativity required?

7

associativity

hit rate



Classification of Cache Misses
• Compulsory miss 

– first reference to an address (block) always results in a miss
– subsequent references should hit unless the cache block is 

displaced for the reasons below
• Capacity miss 

– cache is too small to hold everything needed
– defined as the misses that would occur even in a 

fully-associative cache (with optimal replacement) of the 
same capacity 

• Conflict miss 
– defined as any miss that is neither a compulsory nor a 

capacity miss

8



How to Reduce Each Miss Type
• Compulsory

– Caching cannot help
– Prefetching can

• Conflict
– More associativity
– Other ways to get more associativity without making the 

cache associative
• Victim cache
• Better, randomized indexing
• Software hints?

• Capacity
– Utilize cache space better: keep blocks that will be referenced
– Software management: divide working set such that each 

“phase” fits in cache

9



How to Improve Cache Performance
• Three fundamental goals

• Reducing miss rate
– Caveat: reducing miss rate can reduce performance if more 

costly-to-refetch blocks are evicted

• Reducing miss latency or miss cost

• Reducing hit latency or hit cost

• The above three together affect performance 

10



Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity 

• Victim caches, hashing, pseudo-associativity, skewed associativity
– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches

11



Cheap Ways of Reducing Conflict 
Misses

• Instead of building highly-associative caches:
• Victim Caches
• Hashed/randomized Index Functions
• Pseudo Associativity
• Skewed Associative Caches
• … 

12



Victim Cache: Reducing Conflict Misses

• Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small 
Fully-Associative Cache and Prefetch Buffers,” ISCA 1990.

• Idea: Use a small fully-associative buffer (victim 
cache) to store recently evicted blocks 

+ Can avoid ping ponging of cache blocks mapped to the same set (if two cache blocks 
continuously accessed in nearby time conflict with each other)

-- Increases miss latency if accessed serially with L2; adds complexity

13

Direct 
Mapped 
Cache

Next Level
Cache

Victim 
cache



Hashing and Pseudo-Associativity
• Hashing: Use better “randomizing” index functions  

+ can reduce conflict misses
• by distributing the accessed memory blocks more evenly to sets
• Example of conflicting accesses: strided access pattern where stride 

value equals number of sets in cache
-- More complex to implement: can lengthen critical path

• Pseudo-associativity (Poor Man’s associative cache)
– Serial lookup: On a miss, use a different index function and 

access cache again
– Given a direct-mapped array with K cache blocks

• Implement K/N sets
• Given address Addr, sequentially look up: {0,Addr[lg(K/N)-1: 0]}, 

{1,Addr[lg(K/N)-1: 0]}, … , {N-1,Addr[lg(K/N)-1: 0]} 
+ Less complex than N-way; -- Longer cache hit/miss latency 

14



Skewed Associative Caches
• Idea: Reduce conflict misses by using different 

index functions for each cache way

• Seznec, “A Case for Two-Way 
Skewed-Associative Caches,” ISCA 1993.

15



Skewed Associative Caches (I)
• Basic 2-way associative cache structure

16

Way 0 Way 1

Tag    Index    Byte in Block    

Same index function
for each way

=? =?



Skewed Associative Caches (II)
• Skewed associative caches

– Each bank has a different index function

17

Way 0 Way 1

   tag          index         byte in block   

f
0

same index
same set

same index
redistributed to 
different sets

=? =?



Skewed Associative Caches (III)
• Idea: Reduce conflict misses by using different index 

functions for each cache way

• Benefit: indices are more randomized (memory 
blocks are better distributed across sets)
– Less likely two blocks have same index (esp. with strided 

access)
• Reduced conflict misses

• Cost: additional latency of hash function

18



Software Approaches for Higher Hit 
Rate

• Restructuring data access patterns
• Restructuring data layout

• Loop interchange
• Data structure separation/merging
• Blocking
• …

19



Restructuring Data Access Patterns (I)
• Idea: Restructure data layout or data access patterns
• Example: If column-major

– x[i+1,j] follows x[i,j] in memory
– x[i,j+1] is far away from x[i,j]

• This is called loop interchange
• Other optimizations can also increase hit rate

– Loop fusion, array merging, …
• What if multiple arrays? Unknown array size at compile time?

20

Poor code
for i = 1, rows
      for j = 1, columns
            sum = sum + x[i,j]

Better code
for j = 1, columns
      for i = 1, rows
           sum = sum + x[i,j]



Restructuring Data Access Patterns (II)
• Blocking 

– Divide loops operating on arrays into computation 
chunks so that each chunk can hold its data in the cache

– Avoids cache conflicts between different chunks of 
computation

– Essentially: Divide the working set so that each piece fits 
in the cache

• But, there are still self-conflicts in a block
1. there can be conflicts among different arrays
2. array sizes may be unknown at compile/programming 

time

21



Restructuring Data Layout (I)
• Pointer based traversal 

(e.g., of a linked list)
• Assume a huge linked 

list (1B nodes) and 
unique keys

• Why does the code on 
the left have poor 
cache hit rate?
– “Other fields” occupy 

most of the cache line 
even though rarely 
accessed!

22

struct Node {
     struct Node* next;
     int key;
     char [256] name;
     char [256] school;
}

while (node) {
      if (node�key == input-key) {
      // access other fields of node
      }
      node = node�next;
}
 



Restructuring Data Layout (II)
• Idea: separate 

frequently-used fields of 
a data structure and pack 
them into a separate data 
structure

• Who should do this?
– Programmer
– Compiler 

• Profiling vs. dynamic
– Hardware?
– Who can determine what 

is frequently used?

23

struct Node {
     struct Node* next;
     int key;
     struct Node-data* node-data;
}

struct Node-data {
     char [256] name;
     char [256] school;
}

while (node) {
      if (node�key == input-key) {
      // access node�node-data
      }
      node = node�next;
}
 



Improving Basic Cache Performance
• Reducing miss rate

– More associativity
– Alternatives/enhancements to associativity 

• Victim caches, hashing, pseudo-associativity, skewed associativity
– Better replacement/insertion policies
– Software approaches

• Reducing miss latency/cost
– Multi-level caches
– Critical word first
– Subblocking/sectoring
– Better replacement/insertion policies
– Non-blocking caches (multiple cache misses in parallel)
– Multiple accesses per cycle
– Software approaches

24



Miss Latency/Cost
• What is miss latency or miss cost affected by?

– Where does the miss get serviced from?
• Local vs. remote memory
• What level of cache in the hierarchy?
• Row hit versus row miss in DRAM
• Queueing delays in the memory controller and the 

interconnect
• …

– How much does the miss stall the processor?
• Is it overlapped with other latencies?
• Is the data immediately needed?
• …

25



Memory Level Parallelism (MLP) 

❑ Memory Level Parallelism (MLP) means generating and 
servicing multiple memory accesses in parallel [Glew’98]

❑ Several techniques to improve MLP (e.g., out-of-order execution)

❑ MLP varies. Some misses are isolated and some parallel 

How does this affect cache replacement?

time

A
B

C

isolated miss parallel miss



Traditional Cache Replacement Policies
❑ Traditional cache replacement policies try to reduce miss 

count

❑ Implicit assumption: Reducing miss count reduces 
memory-related stall time 

❑ Misses with varying cost/MLP breaks this assumption!

❑ Eliminating an isolated miss helps performance more 
than eliminating a parallel miss

❑ Eliminating a higher-latency miss could help performance 
more than eliminating a lower-latency miss

27



Misses to blocks P1, P2, P3, P4 can be parallel
Misses to blocks S1, S2, and S3 are isolated

Two replacement algorithms:
1. Minimizes miss count (Belady’s OPT)
2. Reduces isolated miss (MLP-Aware)

For a fully associative cache containing 4 blocks

S
1

P4 P3 P2 
P1

P1 P2 P3 
P4

S
2

S
3

An Example



Fewest Misses = Best Performance
P3 P2 P1 P4 

H  H  H  H M          H  H  H  MHit/Miss
Misses=4 
Stalls=4

S
1

P4 P3 P2 
P1

P1 P2 P3 
P4

S
2

S
3

 

Time stall

Belady’s OPT replacement

M          M          

MLP-Aware replacement

Hit/Miss

P3 P2 S1 P4 P3 P2 P1 P4 P3 P2 S2P4 P3 P2 S3P4 S1 S2 S3P1 P3 P2 S3P4 S1 S2 S3P4 

H           H           H        

S1 S2 S3P4 

H  M  M  M H  M  M  M

Time stall Misses=6
Stalls=2

Saved 
cycles

Cache



MLP-Aware Cache Replacement
• How do we incorporate MLP into replacement 

decisions?
• Qureshi et al., “A Case for MLP-Aware Cache 

Replacement,” ISCA 2006.

30



CSC 2224: Parallel Computer 
Architecture and Programming

Memory Hierarchy & Caches

Prof. Gennady Pekhimenko
University of Toronto

Fall 2019

The content of this lecture is adapted from the lectures of 
Onur Mutlu @ CMU and ETH


